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ABSTRACT 

In this paper, we review some papers related to fixed point theory in complex valued metric 

space using contractive conditions, rational inequality and common limit range property for 

two pairs of mappings deriving common fixed point results under a generalized altering 

distance functions, E.A and CLR property.  

1. Introduction: 

The idea of complex valued metric space was presented by Azam et al. [1], demonstrating 

some fixed point results for mappings fulfilling a rational inequality in complex valued 

metric spaces which is the generalization of cone metric space . Since then, several papers 

have managed fixed point hypothesis in complex valued metric spaces (see [3– 11] and 

references in that). Rao et al. [12] started the concentrate of fixed point results on complex 

valued𝑏-metric spaces, which was broader than the complex valued metric spaces [1]. 

Following this paper, a number of authors have demonstrated a few fixed point results for 

different mapping fulfilling a rational conditions with regards to complex valued 𝑏-metric 

spaces (see[13– 16]) and the related references there in. As of late, Sintunavaratet al. [9, 

10], Sitthikul and Saejung [11], and Singhetal.[8]obtained basic fixed point results by 

supplanting the consistent of contractive condition to control functions in complex valued 

metric spaces. In a continuation of [8,11,15,17],some normal fixed point results for a couple 

of mappings fulfilling more broad contractive conditions including rational expressions 

having point-subordinate control functions as coefficients in complex valued 𝑏-metric 

spaces have been proved by many authors. 

2. Preliminaries: 

Banach fixed point theorem [1] in a complete metric space has been summed up in numerous 

spaces. In 2011, Azam et al. [2] presented the thought of complex-valued metric space and 

built up sufficient conditions for the presence of common fixed points of a pair of mappings 

fulfilling a contractive condition. The possibility of complex-valued metric spaces can be 

abused to define complex-valued normed spaces and complex-valued Hilbert spaces; 

moreover it offers various research exercises in numerical examination. The theorems 

demonstrated by Azam et al. [2] and Bhatt et al. [18] utilize the rational inequality in a 

complex-valued metric space as contractive condition. In this paper, we present the idea of 

property (E.A) in a complex-valued metric space, to demonstrate some normal fixed point 
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Results for a fourfold of self-mappings fulfilling a contractive condition of 'max' type. 

Our  outcomes sum up different theorems of customary metric spaces. 

An ordinary metric d is a real-valued function from a set X × X into R, where X is a 

nonempty set. That is, d: X × X → R. A complex number z ∈ C is an ordered pair of real 

numbers, whose first co-ordinate is called Re (z) and second coordinate is called Im(z). Thus 

a complex-valued metric d is a function from a set X ×X into C, where X is a nonempty set 

and C is the set of complex number. That is, d: X × X → C. Let 𝑧1, 2∈ C, define a partial order 

- on C as follows: 

𝑧1 ≼ 𝑧2 if and only if Re (𝑧1) ≤ Re (𝑧2), Im(𝑧1) ≤ Im(𝑧2). 

It follows that z1 ≼z2 if one of the following conditions is satisfied: 

(i) Re(𝑧1) = Re(𝑧2), Im(𝑧1) < Im(𝑧2), 

(ii) Re(𝑧1) < Re(𝑧2), Im(𝑧1) = Im(𝑧2), 

(iii) Re(𝑧1) < Re(𝑧2), Im(𝑧1) < Im(𝑧2), 

(iv) Re(𝑧1) = Re(𝑧2), Im(𝑧1) = Im(𝑧2). 

In (i), (ii) and (iii), we have |𝑧1 | < |𝑧2 |. In (iv), we have |𝑧1 | = |𝑧2 |. So |𝑧1 | ≤ |𝑧2|. In 

particular, z1 ⊀ z2 if z1 ≠ z2 and one of (i), (ii), (iii) is satisfy. In this case |z1| < |z2|. We will 

write z1 ≺ z2 if only (iii) satisfy. Further, 

0 ≼𝑧1⊀𝑧2⇒ |𝑧1 | < |𝑧2|, 

z1 ≼z2 and z2 ≺ z3 ⇒ z1 ≺ z3. 

Azam et al. [2] defined the complex-valued metric space (X,d) in the following way: 

Lenition 1.1. Let X be a nonempty set. Suppose that the mapping d : X×X → C satisfies the 

following conditions: 

(C1) 0 ≼ d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y; 

(C2) d(x,y) = d(y,x) for all x,y ∈ X; 

(C3) d(x,y) ≼ d(x,z) + d(z,y) for all x,y,z ∈ X. 

Then d is called a complex-valued metric on X, and (X,d) is called a complex valued 

metric       space. 

(i).Common Fixed Point Theorems Using Property (E.A) in Complex-Valued Metric 

Spaces. 

Fixed Point Theorem Using (E.A)-Property [19] 

In this paper author proved some important fixed point theorems using (E.A) property and 

(CLR) property in complex valued metric space in which the author also used the notion of 

partial order. 

Theorem[a] Let (X,d) be a complex-valued metric space and A,B,S,T : X → X be four 

self- mappings satisfying: 
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(i) A(X) ⊆ T(X), B(X) ⊆ S(X), 

(ii) d(Ax,By) ≼ k max (d(Sx,Ty),d(By,Sx),d(By,Ty)) , ∀x,y ∈ X, 0 < k < 1, 

(iii) the pairs (A,S) and (B,T) are weakly compatible, 

(iv) One of the pair (A,S) or (B,T) satisfy property (E.A). 

If the range of one of the mappings S(X) or T(X) is a complete subspace of X, then mappings 

A, B, S and T have a unique common fixed point in X. 

 

 
Fixed Point Theorem Using (CLR)-Property 

The notion of (CLR)-property was defined by Sintunavarat and Kumam [20] in a metric 

space for a pair of self-mappings, which have the common limit in the range of one of the 

mappings. 

Definition: (The (CLR)-property [20]). Suppose that (X,d) is a metric space and f,g : X → 

X. Two mappings f and g are said to satisfy the common limit in the range of g property if 
lim f𝑥𝑛=lim g𝑥𝑛= gx, for some x ∈ X. 
𝑛→∞ 𝑛→∞ 

In the complex-valued metric space, the definition will be same but the space X will be a 

complex valued metric space. 

Theorem[b]. Let (X,d) be a complex-valued metric space and A,B,S,T : X → X be four self- 

mappings satisfying: 

(i) A(X) ⊆ T(X), 

(ii) d(Ax,By) ≼ k max(d(Sx,Ty),d(By,Sx),d(By,Ty)) , ∀x,y ∈ X, 0 < k < 1, 

(iii) the pairs (A,S) and (B,T) are weakly compatible. 

If the pair (A,S) satisfy (𝐶𝐿𝑅𝐴) property, or the pair (B,T) satisfy (𝐶𝐿𝑅𝐵) property, then 

mappings A,B,S and T have a unique common fixed point in X. 

(ii).Some fixed point theorems in complex valued metric spaces [11] 

In this paper author proved several fixed point theorems for mappings satisfying certain 

point- dependent contractive conditions by deducing the results of [7] and [9] ,[21]. 

Theorem: let, (X,d) be a complete complex valued metric space and S,T:X→X. if there exists 

a mapping ⋀, ⋿:X→[0,1) such that for all x,y ∈ X : 

(i) ⋀(Sx) ≤⋀(x) and ⋿(Sx) ≤ ⋿(x); 

(ii) ⋀(Tx) ≤⋀(x) and ⋿(Tx) ≤ ⋿(x); 

(iii) (⋀+⋿)(x) < 1; 

(iv) d(Sx,Sy)≼⋀(x)d(x,y) + ⋿
(𝑥)𝑑(𝑥,𝑆𝑥)𝑑(𝑦,𝑇𝑦)

 
1+(𝑥,𝑦) 

then S and T have unique fixed point . 

Cor: Let (X,d) be a complete complex valued metric space and S,T:X→X. If there exist 

mappings λ,μ,γ:X→[0,1) such that for all x,y∈X: 
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(a) λ(TSx)≤λ(x), μ(TSx)≤μ(x) and γ(TSx)≤γ(x); 

 
(b)λ(x)+μ(x)+γ(y)<1; 

(c)d(Sx,Ty)≾λ(x)d(x,y)+𝜇(𝑥) 
𝑑(𝑥,𝑆𝑥)𝑑(𝑦,𝑇𝑦) 

+ 𝛾(𝑥) 
𝑑(𝑥,𝑆𝑥)𝑑(𝑦,𝑇𝑦)

 
1+(𝑥,𝑦) 1+𝑑(𝑥,𝑦) 

 
 

Then S and T have a unique common fixed point. 

 
Cor:If S and T are self-mappings defined on a complete complex valued 

metric space (X,d)satisfying the condition 

d(Sx,Ty)≾𝜆d(x,y) + 𝜇 
𝑑(𝑥,𝑆𝑥)𝑑(𝑦,𝑇𝑦) 

+𝛾 
𝑑(𝑦,𝑆𝑥)𝑑(𝑦,𝑇𝑦) 

1+(𝑥,𝑦) 1+𝑑(𝑥,𝑦) 

for all x,y∈X, where λ, μ, γ are nonnegative reals with λ+μ+γ<1, then S and 

Thave a unique common fixed point. 

Cor: let, (X,d) be a real valued metric space. Let T:X→X be such that 

 

(i) d(Tx,Ty)≤λ d(x,y)+𝜇𝑑
(𝑦,𝑇𝑦)[1+𝑑(𝑥,𝑇𝑥)] 

for all x,y∈X, λ>0, μ>0, λ+μ<1, and 
1+(𝑥,𝑦) 

 

(ii) for some 𝑥0∈X, the sequence of iterates {𝑇𝑛(𝑥0)} has a subsequence 

{𝑇𝑛(𝑥0)} with z= log𝑘→∞ 𝑇𝑛𝑘𝑥0 

 
Then z is a unique fixed point of T. 

(iii). Six Maps with a Common Fixed Point in Complex Valued Metric Spaces [22] 

In this paper, author attained a common fixed point theorem for six maps in complex valued 

metric space which is basically the generalization of [18] 

Theorem: let (X,d) be a complex valued metric space and F,G,I,J,K,L be self maps of X 

satisfying the following conditions: 

(i) KL(X) ⊆ F(X) and IJ(X) ⊆ G(X) 

(ii) d(IJx,KLy) ≤ ad(Fx,Gy) + b(d(Fx,IJx) + d(Gy,KLy)) + c(d(Fx,KLy) + d(Gy,IJx)) 

for all x,y ∊ X , where a,b,c ≥ 0 and a+2b+2c < 1 .assume that the pairs (KL,G) 

and (IJ,F)are weakly compatible . pairs (K,L) ,(K,G) ,(L,G),(I,J),(I,F) and (J,F) are 

commuting pairs of maps . Then K, L, I, J, G and F have unique common fixed 

point in X. 

(iv). Some Common Fixed Point Results for Rational Type Contraction Mappings in 

Complex Valued Metric Spaces [23] 

In this paper, author demonstrates some fixed point theorems for two pairs which fulfil a 

rational type condition in complex valued metric space. 

Fixed Point Theorem using E.A property 

Theorem1: Let, (X,d) be a complex valued metric space and A,B,S,T : X →X four self- 

mappings satisfying the following conditions: 

(i) A(X) ⊆ T(X), B(X) ⊆ S(X) 

(ii) For all x,y ∊ X and 0 < a < 1. 
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(iii) The pairs (A,S) and (B,T) are weakly compatible ; 

(iv) One of the pairs (A,S) or (B,T) satisfies (E.A) – property . 

If the range of one of the mappings S(X) or T(X) is a closed 

subspace of X, then the mappings A,B,S and T have a unique 

common fixed point in X . 
 

Theorem2: let, (X,d) be a complex valued metric space and A,B,S,T : X→ X four 

mappings satisfying the following conditions: 

(i) A(X) ⊆ T(X) , B(X) ⊆ S(X); 

(ii) For all x,y ∊ X and 0 < a < 1 , 

d(Ax,By)








































0

),(),(

0,0

),(),(),(),(

ifD

AxTydBySxd
a

ifD

AxTydByTydBySxdAxSxd
 

 
(iii) 

where D = d(Sx,By)+d(Ty,Ax); 

(iv) The pairs (A,S) AND (B,T) are weakly compatible ; 

(v) One of the pairs (A,S) or (B,T) satisfies (E.A)-property. 

If the range S(X) or T(X) is a closed subspace of X, then 

the mappings A,B,S and T have unique common fixed 

point in X. 
 

Fixed point theorem using (CLR)-property 

Theorem3: let , (X,d) be a complex valued metric space and A,B,S and T : X→X four 

self- mappings satisfying the following conditions : 

(i) A(X) ⊆ T(X) , B(X) ⊆ S(X) 

(ii) For all x,y ∊ X and 0 < a < 1. 

 
(iii) 

  The pairs (A,S) and (B,T) are weakly compatible ; 

  the pair (A,S) satisfies 𝐶𝐿𝑅𝐴 or (B,T) satisfies 𝐶𝐿𝑅𝐵 – property . 

If the range of one of the mappings S(X) or T(X) is a closed subspace 

of X, then the mappings A,B,S and T have a unique common fixed 

point in X . 

d(Ax,By) ≤ 𝑎 
𝑑(𝑆𝑥,𝐴𝑥)𝑑(𝑆𝑥,𝐵𝑦)+𝑑(𝑇𝑦,𝐵𝑦)𝑑(𝑇𝑦,𝐴𝑥) 

1+(𝑆𝑥,𝐵𝑦)+𝑑(𝑇𝑦,𝐴𝑥) 

d(Ax,By) ≤ 𝑎 
𝑑(𝑆𝑥,𝐴𝑥)𝑑(𝑆𝑥,𝐵𝑦)+𝑑(𝑇𝑦,𝐵𝑦)𝑑(𝑇𝑦,𝐴𝑥) 

1+(𝑆𝑥,𝐵𝑦)+𝑑(𝑇𝑦,𝐴𝑥) 
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Theorem4 : let (X,d) be a complex valued metric space and A,B,S T : X→ X four 

mappings satisfying the following conditions: 

(i) A(X) ⊆ T(X) , B(X) ⊆ S(X); 

(ii) d(Ax,By)For all x,y ∊ X and 0 < a < 1 , 
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0,0

),(),(),(),(

ifD

AxTydBySxd
a

ifD

AxTydByTydBySxdAxSxd
 

 

where D = d(Sx,By)+d(Ty,Ax); 

(iii) The pairs (A,S) AND (B,T) are weakly compatible ; 

If the pair (A,S) satisfies 𝐶𝐿𝑅𝐴 or (B,T) satisfies 𝐶𝐿𝑅𝐵-property. 

If the range S(X) or T(X) is a closed subspace of X, then 

the mappings A,B,S and T have unique common fixed 

point in X. 
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