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L INTRODUCTION

Impact of fixed pomt theory m different branches of
mathematics and 1ts applicafions 15 mnmense. The first result
on fixed points for confractive type mapping was the much
celebrated Banach’s confraction principle by 5. Banach [19]
m 1922 In the general sething of complete metric space, thus
theoremy muns as the follows, Thecrem 1.1 (Bamach’s
contraction principle) Let (30, d) be a complete metric space,
ce {0, 1) and £ M —3 be a mapping such that for each x, v £
X 4 (fx, f) = ¢ d(x, ¥). Then f has a unique fixed point
aeX, such that for each x € X, limy . f™x = @ After the
classical result F Eapnan [16] gave a subsegquently new
contractive mapping to prove the fixed point theorem Since
then a mumber of mathematicians have been worked on fied
point theory dealing with mappings safisfiing various type of
contractive condittons. In 2002, A Brancian [1] analyzed the
emstence of fixed pomt for mappmg f defined on a complate
metric space (3 | d) sahsfiing a general conbachve condition
of infegral fype.

Theorem 1.2 (A Brancian) Let (3L, d) be a complete metnic
space, o (0, 1) and let £ -3 be a mapping such that for

ALTEFN] B ALESY

each =, v € X, [, wltldt =c [, olE)dE,
Where #: [0-4c) —[0,4oc} 1z a Lebesgue integrable
mappmg which 15 summable on each compact subset of
[0,4=c) ., mon negative, and soch that for each & =o,
J5 w(£)dt, then Fhas a unique fixed point ae X

such that for each x X,
lim,y o fx = @ After the paper of Branciari, a lot of a
research works have been camied out on generzlizing
confrachive condibhons of miegial fype for a different
confractive mapping satisfiing various known properties. A
fine work has been done by Bhoades [3] extending the resalt
of Brancian by replacing the condibon by the
followi
IDR'.__T =T o)t =<

3 Ar) np oy LT (3

::maxiﬂ': el e a Dy = }g-:l(f:l dt
The aim of this paper 15 fo generalize szome muxed type of
confrachive condifions to the mapping and then a pair of
mappings, safisfiing a general confractive mapping such as
F. Kaopnan type [16]., 5K. Chatrferjee type [20], T.
Zamfirescu type [25], Schweizer and A Sklar [21]ete.

The concept of Fuzzy sets was miroduced imitially by Zadeh
[27]. Since then to use this concept in topology and analysis
many authors have expansively developed the theory of
furzy sets. Both George and Veermami [4], Ermamosil [8]
modified the nofion of fizey metnie spaces with the halp of
confirmons t-norms. Many reseaschers hawve obtamed
common fixed pomt thecrems for mappings satisfying
different types of commmtafrity condiftons. Vasuka [17]
proved fixed point thecrems for R-weakly commmtating
mappings. B_P. Pant and Tha [13, 14, 15) mivaduced the newr
concept reciprocally confimuous mappings and established
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ABSTRACT

In this paper, we review some papers related to fixed point theory in complex valued metric
space using contractive conditions, rational inequality and common limit range property for
two pairs of mappings deriving common fixed point results under a generalized altering
distance functions, E.A and CLR property.

1. Introduction:

The idea of complex valued metric space was presented by Azam et al. [1], demonstrating
some fixed point results for mappings fulfilling a rational inequality in complex valued
metric spaces which is the generalization of cone metric space . Since then, several papers
have managed fixed point hypothesis in complex valued metric spaces (see [3— 11] and
references in that). Rao et al. [12] started the concentrate of fixed point results on complex
valuedb-metric spaces, which was broader than the complex valued metric spaces [1].
Following this paper, a number of authors have demonstrated a few fixed point results for
different mapping fulfilling a rational conditions with regards to complex valued b-metric
spaces (see[13— 16]) and the related references there in. As of late, Sintunavaratet al. [9,
10], Sitthikul and Saejung [11], and Singhetal.[8]obtained basic fixed point results by
supplanting the consistent of contractive condition to control functions in complex valued
metric spaces. In a continuation of [8,11,15,17],some normal fixed point results for a couple
of mappings fulfilling more broad contractive conditions including rational expressions
having point-subordinate control functions as coefficients in complex valued b-metric
spaceshave been proved by many authors.

2.Preliminaries:

Banach fixed point theorem [1] in a complete metric space has been summed up in numerous
spaces. In 2011, Azam et al. [2] presented the thought of complex-valued metric space and
built up sufficient conditions for the presence of common fixed points of a pair of mappings
fulfilling a contractive condition. The possibility of complex-valued metric spaces can be
abused to define complex-valued normed spaces and complex-valued Hilbert spaces;
moreover it offers various research exercises in numerical examination. The theorems
demonstrated by Azam et al. [2] and Bhatt et al. [18] utilize the rational inequality in a
complex-valued metric space as contractive condition. In this paper, we present the idea of
property (E.A) in a complex-valued metric space, to demonstrate some normal fixed point
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Results for a fourfold of self-mappings fulfilling a contractive condition of 'max’ type.
Our outcomes sum up different theorems of customary metric spaces.

An ordinary metric d is a real-valued function from a set X x X into R, where X is a
nonempty set. That is, d: X x X — R. A complex number z € C is an ordered pair of real
numbers, whose first co-ordinate is called Re (z) and second coordinate is called Im(z). Thus
acomplex-valued metric d is a function from a set X xX into C, where X is a nonempty set
andC is the set of complex number. That is, d: X x X — C. Let zi, 2€ C, define a partial order
- on C as follows:

z1 < zz ifand only if Re (z1) < Re (z2), Im(z1) < Im(z2).

It follows that z1 <z2 if one of the following conditions is satisfied:
(1) Re(z1) = Re(z2), Im(z1) < Im(zz),

(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In (i), (ii) and (iii), we have |z1 | < |zz |. In (iv), we have |z1 | = |z2 |. SO |z1 | < |z2|. In
particular, z1 <« z2 if z1 # z2 and one of (i), (ii), (iii) is satisfy. In this case |z1| < |z2|. We will
write z1 < z2 if only (iii) satisfy. Further,

0 <z1¥22> |21 | < |22,
z1 <z2 and z2 < z3 = z1 < z3.
Azam et al. [2] defined the complex-valued metric space (X,d) in the following way:

Lenition 1.1. Let X be a nonempty set. Suppose that the mapping d : XxX — C satisfies the
following conditions:

(C1) 0 < d(x,y) for all x,y € X and d(x,y) =0 if and only if x = y;
(C2) d(x,y) = d(y,x) for all x,y € X;
(C3) d(x,y) =< d(x,2) +d(z,y) forall x,y,z € X.

Then d is called a complex-valued metric on X, and (X,d) is called a complex valued
metric space.

(i).Common Fixed Point Theorems Using Property (E.A) in Complex-Valued Metric
Spaces.

Fixed Point Theorem Using (E.A)-Property [19]

In this paper author proved some important fixed point theorems using (E.A) property and
(CLR) property in complex valued metric space in which the author also used the notion of
partial order.

Theorem[a] Let (X,d) be a complex-valued metric space and A,B,S,T : X — X be four
self-mappings satisfying:
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(1) A(X) & T(X), B(X) < S(X),

(i) d(Ax,By) < kmax (d(Sx,Ty),d(By,Sx),d(By, Ty)) ,VX,yE€ X,0<k<1,
(i11) the pairs (A,S) and (B, T) are weakly compatible,

(iv) One of the pair (A,S) or (B,T) satisfy property (E.A).

If the range of one of the mappings S(X) or T(X) is a complete subspace of X, then mappings
A, B, S and T have a unique common fixed point in X.

Fixed Point Theorem Using (CLR)-Property

The notion of (CLR)-property was defined by Sintunavarat and Kumam [20] in a metric
space for a pair of self-mappings, which have the common limit in the range of one of the
mappings.

Definition: (The (CLR)-property [20]). Suppose that (X,d) is a metric space and f,g: X —

X. Two mappings fand g are said to satisfy the common limit in the range of g property if
lim fx,=lim gx,= gx, for some x € X.

n—aoo n—aoo
In the complex-valued metric space, the definition will be same but the space X will be a
complex valued metric space.

Theorem[b]. Let (X,d) be a complex-valued metric space and A,B,S,T : X — X be four self-
mappings satisfying:

HAX) € T(X),
(ii) d(Ax,By) < k max(d(Sx,Ty),d(By,Sx),d(By,Ty)) ,VX,yE X, 0<k<1,
(iii) the pairs (A,S) and (B, T) are weakly compatible.

If the pair (A,S) satisfy (CLR4) property, or the pair (B,T) satisfy (CLRg) property, then
mappings A,B,S and T have a unique common fixed point in X.

(i1).Some fixed point theorems in complex valued metric spaces [11]

In this paper author proved several fixed point theorems for mappings satisfying certain
point- dependent contractive conditions by deducing the results of [7] and [9] ,[21].

Theorem: let, (X,d) be a complete complex valued metric space and S,T:X—X. if there exists
a mapping A, E:X-[0,1) such that for all x,y € X :

(i) A(SX) <A(X) and E(Sx) < E(X);
(i) A(TX) <A(X) and E(Tx) < E(X);
(i)  (AM+E)(X) <1;

(V) d(Sx,Sy)SAX)d(x,y) + XISV
1+(xy)
then S and T have unique fixed point .

Cor: Let (X,d) be a complete complex valued metric space and S, T:X—X. If there exist
mappings A, y:X—[0,1) such that for all x,y€X:
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(@) MTSx)=<Mx), W(TSx)<(x) and y(TSx)<y(x);

(O)A)Fu()+Hy(y)<l;

(©d(SK TY) MGGy () L0 4y () L2007
1+(xy) 1+d(xy)

Then S and T have a unique common fixed point.

Cor:If S and T are self-mappings defined on a complete complex valued
metricspace (X,d)satisfying the condition

d(x,Sx)d(y,Ty) d(y,Sx)d(y,Ty)
3 o ¥
d(Sx, Ty)3Ad(x,y) + p Tty VT 14y

for all x,y€X, where A, u, y are nonnegative reals with A+p+y<1, then S and
Thavea unique common fixed point.
Cor: let, (X,d) be a real valued metric space. Let T:X—X be such that

() d(Tx,Ty)<h d(x,y)+e®PEHETON 00 ol x yeX, 250, 1>0, A+u<l, and
1+(x,y)

(i)  for some xo€X, the sequence of iterates {T"(xo)} has a subsequence
{T"(x0)} with z= logk- T™xo

Then z is a unique fixed point of T.
(iii). Six Maps with a Common Fixed Point in Complex Valued Metric Spaces [22]

In this paper, author attained a common fixed point theorem for six maps in complex valued
metric space which is basically the generalization of [18]

Theorem: let (X,d) be a complex valued metric space and F,G,I,J,K,L be self maps of X
satisfying the following conditions:

(1) KL(X) € F(X) and 1J(X) € G(X)

(i) d(13x,KLy) < ad(Fx,Gy) + b(d(Fx,1Jx) + d(Gy,KLY)) + c(d(Fx,KLy) + d(Gy,1Ix))
for all x,y € X, where a,b,c > 0 and a+2b+2c <1 .assume that the pairs (KL,G)
and (1J,F)are weakly compatible . pairs (K,L) ,(K,G) ,(L,G),(1,9),(1,F) and (J,F) are
commuting pairs of maps . Then K, L, I, J, G and F have unique common fixed
point in X.

(iv). Some Common Fixed Point Results for Rational Type Contraction Mappings in
Complex Valued Metric Spaces [23]

In this paper, author demonstrates some fixed point theorems for two pairs which fulfil a
rational type condition in complex valued metric space.

Fixed Point Theorem using E.A property

Theoreml: Let, (X,d) be a complex valued metric space and A,B,S,T : X =X four self-
mappings satisfying the following conditions:

() A(X) € T(X), B(X) = S(X)
(i) Forallx,ye Xand0<a< 1.
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d(Ax,By) <a d(Sx,Ax)d(Sx,By)+d(Ty,By)d(Ty,Ax)
1+(Sx,By)+d(Ty,Ax)
(iit)  The pairs (A,S) and (B, T) are weakly compatible ;
(iv)  One of the pairs (A,S) or (B,T) satisfies (E.A) — property .
If the range of one of the mappings S(X) or T(X) is a closed
subspace of X, thenthe mappings A,B,S and T have a unique
common fixed point in X .

Theorem2: let, (X,d) be a complex valued metric space and A,B,S, T : X— X four
mappingssatisfying the following conditions:

) AX) €T(X), B(X) € S(X);
(i) Forallx,ye Xand0<a<1,

d(Sx, AX)d (Sx, By) + d(Ty, By)d (Ty, Ax)
d(Sx,By)+d(Ty, Ax)
0,ifD =0
ifD=0

d(Ax,By)<<a

(iii)
where D = d(Sx,By)+d(Ty,AX);

(iv)  The pairs (A,S) AND (B, T) are weakly compatible ;

(v) One of the pairs (A,S) or (B, T) satisfies (E.A)-property.
If the range S(X) or T(X) is a closed subspace of X, then
the mappings A,B,S and T have uniqgue common fixed
point in X.

Fixed point theorem using (CLR)-property

Theorem3: let , (X,d) be a complex valued metric space and A,B,S and T : X—X four
self-mappings satisfying the following conditions :

Q) A(X) € T(X), B(X) € S(X)
(i) Forallx,ye Xand0<a<1.
d(AX, By) = g d(Sx,Ax)d(Sx,By)+d(Ty,By)d(Ty,Ax)
1+(Sx,By)+d(Ty,Ax)

(iii)
The pairs (A,S) and (B, T) are weakly compatible ;

the pair (A,S) satisfies CLR4 or (B,T) satisfies CLRg — property .

If the range of one of the mappings S(X) or T(X) is a closed subspace
of X, then themappings A,B,S and T have a unique common fixed
point in X .
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Theorem4 : let (X,d) be a complex valued metric space and A,B,S T : X— X four
mappingssatisfying the following conditions:

(i A(X) € T(X), B(X) < S(X);
(i) d(Ax,By)For all x,ye Xand0<a<1,

d(Sx, AX)d (Sx, By) +d(Ty, By)d (Ty, Ax)
d(Sx,By)+d(Ty, Ax)
0,ifD =0
ifD=0

d(Ax,By) <<a

where D = d(Sx,By)+d(Ty,AXx);

(ilf)  The pairs (A,S) AND (B,T) are weakly compatible ;
If the pair (A,S) satisfies CLR4 or (B,T) satisfies CLRp-property.
If the range S(X) or T(X) is a closed subspace of X, then
the mappings A,B,S and T have unique common fixed
point in X.
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